Abstract
Recycled plastic fibre-reinforced hot-mix asphalt (HMA) mixtures have better fatigue resistance than plain HMA. The toughening effects of recycled plastic fibre-reinforced HMA were characterised using direct tensile loading tests. Adding a small quantity of recycled plastic fibres to HMA was found to significantly increase the mixture's fracture energy and toughness, which were calculated using the pre- and post-peak stages of tensile force-displacement curves. A theoretical model representing the pre-peak behaviour of fibre-reinforced HMA with direct tension-softening curves for various fibre contents is presented here. The enhanced toughness through post-peak analysis was also observed using toughness indices associated with fibre-bridging effect after the pre-peak composite stress. The pre-peak fracture energy model and post-peak toughness indices appeared to be governed by the direct tensile toughening of fibre-reinforced HMA's enhanced fibre-bridging effects. The pre-peak fracture energy model demonstrates the effect of fibre content on the strain energy density during the pull-out process within the pre-peak composite stress region. The maximum pre-peak fracture energy of a coarse-graded HMA mixed with recycled plastic fibres is achieved at a fibre content of 0.4% of the total weight of the HMA. The increases in the toughness indices within the post-peak composite stress region indicate that the fatigue resistance of fibre-reinforced HMA is at least 30% greater than that of control HMA.
Original language | English (US) |
---|---|
Pages (from-to) | 122-132 |
Number of pages | 11 |
Journal | International Journal of Pavement Engineering |
Volume | 15 |
Issue number | 2 |
DOIs | |
State | Published - Feb 7 2014 |
Keywords
- Fatigue
- Fibre
- Fracture energy
- Hot-mix asphalt
- Toughness
ASJC Scopus subject areas
- Civil and Structural Engineering
- Mechanics of Materials