PRADA: Prioritizing android devices for apps by mining large-scale usage data

Xuan Lu, Xuanzhe Liu, Huoran Li, Tao Xie, Qiaozhu Mei, Dan Hao, Gang Huang, Feng Feng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Selecting and prioritizing major device models are critical for mobile app developers to select testbeds and optimize resources such as marketing and quality-assurance resources. The heavily fragmented distribution of Android devices makes it challenging to select a few major device models out of thousands of models available on the market. Currently app developers usually rely on some reported or estimated general market share of device models. However, these estimates can be quite inaccurate, and more problematically, can be irrelevant to the particular app under consideration. To address this issue, we propose PRADA, the first approach to prioritizing Android device models for individual apps, based on mining large-scale usage data. PRADA adapts the concept of operational profiling (popularly used in software reliability engineering) for mobile apps-the usage of an app on a specific device model reflects the importance of that device model for the app. PRADA includes a collaborative filtering technique to predict the usage of an app on different device models, even if the app is entirely new (without its actual usage in the market yet), based on the usage data of a large collection of apps. We empirically demonstrate the effectiveness of PRADA over two popular app categories, i.e., Game and Media, covering over 3.86 million users and 14,000 device models collected through a leading Android management app in China.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion, ICSE 2016
PublisherIEEE Computer Society
Pages3-13
Number of pages11
ISBN (Electronic)9781450339001, 9781450342056
DOIs
StatePublished - May 14 2016
Event2016 IEEE/ACM 38th IEEE International Conference on Software Engineering, ICSE 2016 - Austin, United States
Duration: May 14 2016May 22 2016

Publication series

NameProceedings - International Conference on Software Engineering
Volume14-22-May-2016
ISSN (Print)0270-5257

Other

Other2016 IEEE/ACM 38th IEEE International Conference on Software Engineering, ICSE 2016
Country/TerritoryUnited States
CityAustin
Period5/14/165/22/16

Keywords

  • Android fragmentation
  • Mobile apps
  • Prioritization
  • Usage data

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'PRADA: Prioritizing android devices for apps by mining large-scale usage data'. Together they form a unique fingerprint.

Cite this