TY - JOUR
T1 - Power-law optical conductivity from unparticles
T2 - Application to the cuprates
AU - Limtragool, Kridsanaphong
AU - Phillips, Philip
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/10/16
Y1 - 2015/10/16
N2 - We calculate the optical conductivity by using several models for unparticle or scale-invariant matter. Within a Gaussian action for unparticles that is gauged with Wilson lines, we find that the conductivity computed from the Kubo formalism with vertex corrections yields no nontrivial deviation from the free-theory result. This result obtains because, at the Gaussian level, unparticles are just a superposition of particle fields and hence any transport property must be consistent with free theory. Beyond the Gaussian approach, we adopt the continuous-mass formulation of unparticles and calculate the Drude conductivity directly. We show that unparticles in this context can be tailored to yield an algebraic conductivity that scales as ω-2/3 with the associated phase angle between the imaginary and real parts of arctanσ2σ1=60, as is seen in the cuprates. Given the recent results [J. High Energy Phys. 4, 40 (2014)10.1007/JHEP04(2014)040; J. High Energy Phys. 7, 24 (2015)10.1007/JHEP07(2015)024; arXiv:1506.06769] that gravitational crystals lack a power-law optical conductivity, this constitutes the first consistent account of the ω-2/3 conductivity and the phase angle seen in optimally doped cuprates. Our results indicate that, at each frequency in the scaling regime, excitations on all energy scales contribute. Hence, incoherence is at the heart of the power law in the optical conductivity in strongly correlated systems such as the cuprates.
AB - We calculate the optical conductivity by using several models for unparticle or scale-invariant matter. Within a Gaussian action for unparticles that is gauged with Wilson lines, we find that the conductivity computed from the Kubo formalism with vertex corrections yields no nontrivial deviation from the free-theory result. This result obtains because, at the Gaussian level, unparticles are just a superposition of particle fields and hence any transport property must be consistent with free theory. Beyond the Gaussian approach, we adopt the continuous-mass formulation of unparticles and calculate the Drude conductivity directly. We show that unparticles in this context can be tailored to yield an algebraic conductivity that scales as ω-2/3 with the associated phase angle between the imaginary and real parts of arctanσ2σ1=60, as is seen in the cuprates. Given the recent results [J. High Energy Phys. 4, 40 (2014)10.1007/JHEP04(2014)040; J. High Energy Phys. 7, 24 (2015)10.1007/JHEP07(2015)024; arXiv:1506.06769] that gravitational crystals lack a power-law optical conductivity, this constitutes the first consistent account of the ω-2/3 conductivity and the phase angle seen in optimally doped cuprates. Our results indicate that, at each frequency in the scaling regime, excitations on all energy scales contribute. Hence, incoherence is at the heart of the power law in the optical conductivity in strongly correlated systems such as the cuprates.
UR - http://www.scopus.com/inward/record.url?scp=84944755440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84944755440&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.92.155128
DO - 10.1103/PhysRevB.92.155128
M3 - Article
AN - SCOPUS:84944755440
SN - 1098-0121
VL - 92
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
M1 - 155128
ER -