Power control for multicell CDMA wireless networks: A team optimization approach

Tansu Alpcan, Xingzhe Fan, Tamer Başar, Murat Arcak, John T. Wen

Research output: Contribution to journalArticlepeer-review


We study power control in multicell CDMA wireless networks as a team optimization problem where each mobile attains at the minimum its individual fixed target SIR level and beyond that optimizes its transmission power level according to its individual preferences. We derive conditions under which the power control problem admits a unique feasible solution. Using a Lagrangian relaxation approach similar to [10] we obtain two decentralized dynamic power control algorithms: primal and dual power update, and establish their global stability utilizing both classical Lyapunov theory and the passivity framework [14]. We show that the robustness results of passivity studies [8, 9] as well as most of the stability and robustness analyses in the literature [10] are applicable to the power control problem considered. In addition, some of the basic principles of call admission control are investigated from the perspective of the model adopted in this paper. We illustrate the proposed power control schemes through simulations.

Original languageEnglish (US)
Pages (from-to)647-657
Number of pages11
JournalWireless Networks
Issue number5
StatePublished - Oct 2008


  • Admission control
  • CDMA wireless networks
  • Passivity
  • Power control
  • Robustness
  • Team optimization

ASJC Scopus subject areas

  • Information Systems
  • Computer Networks and Communications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Power control for multicell CDMA wireless networks: A team optimization approach'. Together they form a unique fingerprint.

Cite this