Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells

Surojeet Sengupta, Rachel Schiff, Benita S Katzenellenbogen

Research output: Contribution to journalArticle

Abstract

Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.

Original languageEnglish (US)
Pages (from-to)243-251
Number of pages9
JournalBreast Cancer Research and Treatment
Volume117
Issue number2
DOIs
StatePublished - Sep 1 2009

Fingerprint

Chemokine Receptors
Estrogen Receptors
Estrogens
Breast Neoplasms
MCF-7 Cells
Receptor Protein-Tyrosine Kinases
Proteins
Phosphatidylinositol 3-Kinases
Tuberous Sclerosis
Estrogen Receptor Modulators
G-Protein-Coupled Receptors
Protein-Tyrosine Kinases
Small Interfering RNA
Cell Movement
Phosphotransferases
Up-Regulation
Phosphorylation
Messenger RNA

Keywords

  • Breast cancer
  • CXCR4
  • Estrogen
  • Estrogen receptor
  • HER2

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

@article{51d5eb9b0b574812bf29fc4cf8cc5c63,
title = "Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells",
abstract = "Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.",
keywords = "Breast cancer, CXCR4, Estrogen, Estrogen receptor, HER2",
author = "Surojeet Sengupta and Rachel Schiff and Katzenellenbogen, {Benita S}",
year = "2009",
month = "9",
day = "1",
doi = "10.1007/s10549-008-0186-z",
language = "English (US)",
volume = "117",
pages = "243--251",
journal = "Breast Cancer Research and Treatment",
issn = "0167-6806",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells

AU - Sengupta, Surojeet

AU - Schiff, Rachel

AU - Katzenellenbogen, Benita S

PY - 2009/9/1

Y1 - 2009/9/1

N2 - Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.

AB - Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.

KW - Breast cancer

KW - CXCR4

KW - Estrogen

KW - Estrogen receptor

KW - HER2

UR - http://www.scopus.com/inward/record.url?scp=68949092668&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68949092668&partnerID=8YFLogxK

U2 - 10.1007/s10549-008-0186-z

DO - 10.1007/s10549-008-0186-z

M3 - Article

C2 - 18807177

AN - SCOPUS:68949092668

VL - 117

SP - 243

EP - 251

JO - Breast Cancer Research and Treatment

JF - Breast Cancer Research and Treatment

SN - 0167-6806

IS - 2

ER -