Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events

Hyukjin Jang, Ashtamurthy S. Pawate, Rohit Bhargava, Paul J A Kenis

Research output: Contribution to journalArticle

Abstract

Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.

Original languageEnglish (US)
Pages (from-to)2598-2609
Number of pages12
JournalLab on a chip
Volume19
Issue number15
DOIs
StatePublished - Jan 1 2019

Fingerprint

Microfluidics
Protein Folding
Infrared imaging
Fourier Analysis
Cycloparaffins
Fourier transforms
Carboxylic Acids
Deprotonation
Molecular Probes
Sodium Hydroxide
Molecular Imaging
Carboxylic acids
Olefins
Signal-To-Noise Ratio
Fourier Transform Infrared Spectroscopy
Ubiquitin
Amyloid
Copolymers
Methanol
Proteins

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering

Cite this

Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. / Jang, Hyukjin; Pawate, Ashtamurthy S.; Bhargava, Rohit; Kenis, Paul J A.

In: Lab on a chip, Vol. 19, No. 15, 01.01.2019, p. 2598-2609.

Research output: Contribution to journalArticle

@article{f038dbda8d114cc5b4cca54ca2f9dfea,
title = "Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events",
abstract = "Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.",
author = "Hyukjin Jang and Pawate, {Ashtamurthy S.} and Rohit Bhargava and Kenis, {Paul J A}",
year = "2019",
month = "1",
day = "1",
doi = "10.1039/c9lc00182d",
language = "English (US)",
volume = "19",
pages = "2598--2609",
journal = "Lab on a Chip - Miniaturisation for Chemistry and Biology",
issn = "1473-0197",
publisher = "Royal Society of Chemistry",
number = "15",

}

TY - JOUR

T1 - Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events

AU - Jang, Hyukjin

AU - Pawate, Ashtamurthy S.

AU - Bhargava, Rohit

AU - Kenis, Paul J A

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.

AB - Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.

UR - http://www.scopus.com/inward/record.url?scp=85069779542&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069779542&partnerID=8YFLogxK

U2 - 10.1039/c9lc00182d

DO - 10.1039/c9lc00182d

M3 - Article

C2 - 31259340

AN - SCOPUS:85069779542

VL - 19

SP - 2598

EP - 2609

JO - Lab on a Chip - Miniaturisation for Chemistry and Biology

JF - Lab on a Chip - Miniaturisation for Chemistry and Biology

SN - 1473-0197

IS - 15

ER -