Poly(amino acid)s-mediated synthesis of spatially organized Pt nanoparticles

Jae Hyun Jeong, John Haan, Chaenyung Cha, Deryn Chu, Hyunjoon Kong

Research output: Contribution to journalConference article

Abstract

Nanometer-sized noble metal particles are being increasingly studied for use in various applications including photochemistry, electrochemistry, optics, and catalysis. Recently, extensive efforts have been made to improve nanoparticle dispersion to enhance its performance using various surfactants, dendrimers and polyelectrolytes which can tune colloidal interactions. However, it is still challenging to establish a technology in which spatial organization of metal nanoparticles is finely controlled at varied length scales. Here we present that in situ sol-gel polymerization of metal precursors incorporated into self-assembling poly(amino acid) nanostructure would generate metal nanoparticles with regular spacing at the nanometer scale. This hypothesis was examined using poly(amino acid)s substituted with alkyl chains to form various morphologies from a spherical micelle to a bilayer structure. Platinum precursors (K2PtCl4) were mixed with alkyl-substituted poly(amino acid)s solution followed by reduction to activate sol-gel polymerization to form Pt particles. Specifically, alkyl-substituted poly(amino acid)s with DS of 5 % were assembled into a vesicle with an average diameter of 100 nm, and also presented Pt nanoparticles with diameter of 2 to 5 nm exclusively within a bilayer of the vesicle. Furthermore, the resulting Pt nanoparticles showed a significantly enhanced electro-catalytic activity as compared with Pt particles polymerized via bulk sol-gel polymerization. Taken together, the results of this study demonstrated that the size and spacing of metallic particle can be controlled using a self-assembling polymeric template. The resulting particles present strong potentials to significantly improve performance of a variety of energy storage and generation systems.

Original languageEnglish (US)
JournalACS National Meeting Book of Abstracts
StatePublished - Aug 25 2011
Event241st ACS National Meeting and Exposition - Anaheim, CA, United States
Duration: Mar 27 2011Mar 31 2011

Fingerprint

Amino acids
Nanoparticles
Sol-gels
Amino Acids
Metal nanoparticles
Polymerization
Particles (particulate matter)
Dendrimers
Photochemical reactions
Micelles
Electrochemistry
Precious metals
Platinum
Polyelectrolytes
Surface-Active Agents
Energy storage
Catalysis
Nanostructures
Optics
Catalyst activity

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Cite this

Poly(amino acid)s-mediated synthesis of spatially organized Pt nanoparticles. / Jeong, Jae Hyun; Haan, John; Cha, Chaenyung; Chu, Deryn; Kong, Hyunjoon.

In: ACS National Meeting Book of Abstracts, 25.08.2011.

Research output: Contribution to journalConference article

@article{4dbabdc7682a4744b353855a1277a1c2,
title = "Poly(amino acid)s-mediated synthesis of spatially organized Pt nanoparticles",
abstract = "Nanometer-sized noble metal particles are being increasingly studied for use in various applications including photochemistry, electrochemistry, optics, and catalysis. Recently, extensive efforts have been made to improve nanoparticle dispersion to enhance its performance using various surfactants, dendrimers and polyelectrolytes which can tune colloidal interactions. However, it is still challenging to establish a technology in which spatial organization of metal nanoparticles is finely controlled at varied length scales. Here we present that in situ sol-gel polymerization of metal precursors incorporated into self-assembling poly(amino acid) nanostructure would generate metal nanoparticles with regular spacing at the nanometer scale. This hypothesis was examined using poly(amino acid)s substituted with alkyl chains to form various morphologies from a spherical micelle to a bilayer structure. Platinum precursors (K2PtCl4) were mixed with alkyl-substituted poly(amino acid)s solution followed by reduction to activate sol-gel polymerization to form Pt particles. Specifically, alkyl-substituted poly(amino acid)s with DS of 5 {\%} were assembled into a vesicle with an average diameter of 100 nm, and also presented Pt nanoparticles with diameter of 2 to 5 nm exclusively within a bilayer of the vesicle. Furthermore, the resulting Pt nanoparticles showed a significantly enhanced electro-catalytic activity as compared with Pt particles polymerized via bulk sol-gel polymerization. Taken together, the results of this study demonstrated that the size and spacing of metallic particle can be controlled using a self-assembling polymeric template. The resulting particles present strong potentials to significantly improve performance of a variety of energy storage and generation systems.",
author = "Jeong, {Jae Hyun} and John Haan and Chaenyung Cha and Deryn Chu and Hyunjoon Kong",
year = "2011",
month = "8",
day = "25",
language = "English (US)",
journal = "ACS National Meeting Book of Abstracts",
issn = "0065-7727",
publisher = "American Chemical Society",

}

TY - JOUR

T1 - Poly(amino acid)s-mediated synthesis of spatially organized Pt nanoparticles

AU - Jeong, Jae Hyun

AU - Haan, John

AU - Cha, Chaenyung

AU - Chu, Deryn

AU - Kong, Hyunjoon

PY - 2011/8/25

Y1 - 2011/8/25

N2 - Nanometer-sized noble metal particles are being increasingly studied for use in various applications including photochemistry, electrochemistry, optics, and catalysis. Recently, extensive efforts have been made to improve nanoparticle dispersion to enhance its performance using various surfactants, dendrimers and polyelectrolytes which can tune colloidal interactions. However, it is still challenging to establish a technology in which spatial organization of metal nanoparticles is finely controlled at varied length scales. Here we present that in situ sol-gel polymerization of metal precursors incorporated into self-assembling poly(amino acid) nanostructure would generate metal nanoparticles with regular spacing at the nanometer scale. This hypothesis was examined using poly(amino acid)s substituted with alkyl chains to form various morphologies from a spherical micelle to a bilayer structure. Platinum precursors (K2PtCl4) were mixed with alkyl-substituted poly(amino acid)s solution followed by reduction to activate sol-gel polymerization to form Pt particles. Specifically, alkyl-substituted poly(amino acid)s with DS of 5 % were assembled into a vesicle with an average diameter of 100 nm, and also presented Pt nanoparticles with diameter of 2 to 5 nm exclusively within a bilayer of the vesicle. Furthermore, the resulting Pt nanoparticles showed a significantly enhanced electro-catalytic activity as compared with Pt particles polymerized via bulk sol-gel polymerization. Taken together, the results of this study demonstrated that the size and spacing of metallic particle can be controlled using a self-assembling polymeric template. The resulting particles present strong potentials to significantly improve performance of a variety of energy storage and generation systems.

AB - Nanometer-sized noble metal particles are being increasingly studied for use in various applications including photochemistry, electrochemistry, optics, and catalysis. Recently, extensive efforts have been made to improve nanoparticle dispersion to enhance its performance using various surfactants, dendrimers and polyelectrolytes which can tune colloidal interactions. However, it is still challenging to establish a technology in which spatial organization of metal nanoparticles is finely controlled at varied length scales. Here we present that in situ sol-gel polymerization of metal precursors incorporated into self-assembling poly(amino acid) nanostructure would generate metal nanoparticles with regular spacing at the nanometer scale. This hypothesis was examined using poly(amino acid)s substituted with alkyl chains to form various morphologies from a spherical micelle to a bilayer structure. Platinum precursors (K2PtCl4) were mixed with alkyl-substituted poly(amino acid)s solution followed by reduction to activate sol-gel polymerization to form Pt particles. Specifically, alkyl-substituted poly(amino acid)s with DS of 5 % were assembled into a vesicle with an average diameter of 100 nm, and also presented Pt nanoparticles with diameter of 2 to 5 nm exclusively within a bilayer of the vesicle. Furthermore, the resulting Pt nanoparticles showed a significantly enhanced electro-catalytic activity as compared with Pt particles polymerized via bulk sol-gel polymerization. Taken together, the results of this study demonstrated that the size and spacing of metallic particle can be controlled using a self-assembling polymeric template. The resulting particles present strong potentials to significantly improve performance of a variety of energy storage and generation systems.

UR - http://www.scopus.com/inward/record.url?scp=80051912830&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051912830&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:80051912830

JO - ACS National Meeting Book of Abstracts

JF - ACS National Meeting Book of Abstracts

SN - 0065-7727

ER -