Policy optimization provably converges to nash equilibria in zero-sum linear quadratic games

Kaiqing Zhang, Zhuoran Yang, Tamer Basar

Research output: Contribution to journalConference articlepeer-review

Abstract

We study the global convergence of policy optimization for finding the Nash equilibria (NE) in zero-sum linear quadratic (LQ) games. To this end, we first investigate the landscape of LQ games, viewing it as a nonconvex-nonconcave saddle-point problem in the policy space. Specifically, we show that despite its nonconvexity and nonconcavity, zero-sum LQ games have the property that the stationary point of the objective function with respect to the linear feedback control policies constitutes the NE of the game. Building upon this, we develop three projected nested-gradient methods that are guaranteed to converge to the NE of the game. Moreover, we show that all these algorithms enjoy both globally sublinear and locally linear convergence rates. Simulation results are also provided to illustrate the satisfactory convergence properties of the algorithms. To the best of our knowledge, this work appears to be the first one to investigate the optimization landscape of LQ games, and provably show the convergence of policy optimization methods to the NE. Our work serves as an initial step toward understanding the theoretical aspects of policy-based reinforcement learning algorithms for zero-sum Markov games in general.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Policy optimization provably converges to nash equilibria in zero-sum linear quadratic games'. Together they form a unique fingerprint.

Cite this