Polarized Maser Emission with In-source Faraday Rotation

T. L. Tobin, M. D. Gray, A. J. Kemball

Research output: Contribution to journalArticlepeer-review

Abstract

We discuss studies of polarization in astrophysical masers with particular emphasis on the case where the Zeeman splitting is small compared to the Doppler profile, resulting in a blend of the transitions between magnetic substates. A semiclassical theory of the molecular response is derived, and coupled to radiative transfer solutions for 1 and 2-beam linear masers, resulting in a set of nonlinear, algebraic equations for elements of the molecular density matrix. The new code, PRISM, implements numerical methods to compute these solutions. Using PRISM, we demonstrate a smooth transfer between this case and that of wider splitting. For a J = 1-0 system, with parameters based on the v = 1, J = 1-0 transition of SiO, we investigate the behavior of linear and circular polarization as a function of the angle between the propagation axis and the magnetic field, and with the optical depth, or saturation state, of the model. We demonstrate how solutions are modified by the presence of Faraday rotation, generated by various abundances of free electrons, and that strong Faraday rotation leads to additional angles where the Stokes Q changes sign. We compare our results to a number of previous models, from the analytical limits derived by Goldreich, Keeley, and Kwan in 1973, through computational results by W. Watson and coauthors, to the recent work by Lankhaar and Vlemmings in 2019. We find that our results are generally consistent with those of other authors given the differences in the approach and the approximations made.

Original languageEnglish (US)
Article number123
JournalAstrophysical Journal
Volume943
Issue number2
DOIs
StatePublished - Feb 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Polarized Maser Emission with In-source Faraday Rotation'. Together they form a unique fingerprint.

Cite this