Plasmonic photosynthesis of C 1 –C 3 hydrocarbons from carbon dioxide assisted by an ionic liquid

Sungju Yu, Prashant K. Jain

Research output: Contribution to journalArticle

Abstract

Photochemical conversion of CO 2 into fuels has promise as a strategy for storage of intermittent solar energy in the form of chemical bonds. However, higher-energy-value hydrocarbons are rarely produced by this strategy, because of kinetic challenges. Here we demonstrate a strategy for green-light-driven synthesis of C 1 –C 3 hydrocarbons from CO 2 and H 2 O. In this approach, plasmonic excitation of Au nanoparticles produces a charge-rich environment at the nanoparticle/solution interface conducive for CO 2 activation, while an ionic liquid stabilizes charged intermediates formed at this interface, facilitating multi-step reduction and C–C coupling. Methane, ethylene, acetylene, propane, and propene are photosynthesized with a C 2+ selectivity of ~50% under the most optimal conditions. Hydrocarbon turnover exhibits a volcano relationship as a function of the ionic liquid concentration, the kinetic analysis of which coupled with density functional theory simulations provides mechanistic insights into the synergy between plasmonic excitation and the ionic liquid.

Original languageEnglish (US)
Article number2022
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Plasmonic photosynthesis of C <sub>1</sub> –C <sub>3</sub> hydrocarbons from carbon dioxide assisted by an ionic liquid'. Together they form a unique fingerprint.

  • Cite this