Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo

Steve M. Taylor, Alejandro L. Antonia, Christian M. Parobek, Jonathan J. Juliano, Mark Janko, Michael Emch, Md Tauqeer Alam, Venkatachalam Udhayakumar, Antoinette K. Tshefu, Steven R. Meshnick

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains.

Original languageEnglish (US)
Article number1165
JournalScientific reports
Volume3
DOIs
StatePublished - Jan 30 2013
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo'. Together they form a unique fingerprint.

Cite this