Abstract
BACKGROUND: This study investigated the potential of phosphorylated plasma Tau217 ratio (pTau217R) and plasma amyloid beta (Aβ) 42/Aβ40 in predicting brain amyloid levels measured by positron emission tomography (PET) Centiloid (CL) for Alzheimer's disease (AD) staging and screening. METHODS: Quantification of plasma pTau217R and Aβ42/Aβ40 employed immunoprecipitation-mass spectrometry. CL prediction models were developed on a cohort of 904 cognitively unimpaired, preclinical and early AD subjects and validated on two independent cohorts. RESULTS: Models integrating pTau217R outperformed Aβ42/Aβ40 alone, predicting amyloid levels up to 89.1 CL. High area under the receiver operating characteristic curve (AUROC) values (89.3% to 94.7%) were observed across a broad CL range (15 to 90). Utilizing pTau217R-based models for low amyloid levels reduced PET scans by 70.5% to 78.6%. DISCUSSION: pTau217R effectively predicts brain amyloid levels, surpassing cerebrospinal fluid Aβ42/Aβ40's range. Combining it with plasma Aβ42/Aβ40 enhances sensitivity for low amyloid detection, reducing unnecessary PET scans and expanding clinical utility. CLINICALTRIALS.GOV IDENTIFIERS: NCT02956486 (MissionAD1), NCT03036280 (MissionAD2), NCT04468659 (AHEAD3-45), NCT03887455 (ClarityAD). Highlights: Phosphorylated plasma Tau217 ratio (pTau217R) effectively predicts amyloid-PET Centiloid (CL) across a broad spectrum. Integrating pTau217R with Aβ42/Aβ40 extends the CL prediction upper limit to 89.1 CL. Combined model predicts amyloid status with high accuracy, especially in cognitively unimpaired individuals. This model identifies subjects above or below various CL thresholds with high accuracy. pTau217R-based models significantly reduce PET scans by up to 78.6% for screening out individuals with no/low amyloid.
Original language | English (US) |
---|---|
Pages (from-to) | 5617-5628 |
Number of pages | 12 |
Journal | Alzheimer's and Dementia |
Volume | 20 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2024 |
Keywords
- blood-based biomarkers
- diagnosis
- disease continuum
- disease staging
- patient monitoring
- patient screening
- prediction
ASJC Scopus subject areas
- Epidemiology
- Health Policy
- Developmental Neuroscience
- Clinical Neurology
- Geriatrics and Gerontology
- Cellular and Molecular Neuroscience
- Psychiatry and Mental health