Abstract
Scalable and precise nanopatterning of graphene is an essential step for graphene-based device fabrication. Hydrogen-plasma reactions have been shown to narrow graphene only from the edges, or to selectively produce circular or hexagonal holes in the basal plane of graphene, but the underlying plasma-graphene chemistry is unknown. Here, we study the hydrogen-plasma etching of monolayer graphene supported on SiO2 substrates across the range of plasma ion energies using scale-bridging molecular dynamics (MD) simulations based on reactive force-field potential. Our results uncover distinct etching mechanisms, operative within narrow ion energy windows, which fully explain the differing plasma-graphene reactions observed experimentally. Specific ion energy ranges are demonstrated for stable isotropic (∼2eV) versus anisotropic hole growth (∼20-30eV) within the basal plane of graphene, as well as for pure edge etching of graphene (∼1eV). Understanding the complex plasma-graphene chemistry opens up a means for controlled patterning of graphene nanostructures.
Original language | English (US) |
---|---|
Article number | 035416 |
Journal | Physical Review B |
Volume | 93 |
Issue number | 3 |
DOIs | |
State | Published - Jan 11 2016 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics