Plasma-graphene interaction and its effects on nanoscale patterning

Abhilash Harpale, Marco Panesi, Huck Beng Chew

Research output: Contribution to journalArticlepeer-review

Abstract

Scalable and precise nanopatterning of graphene is an essential step for graphene-based device fabrication. Hydrogen-plasma reactions have been shown to narrow graphene only from the edges, or to selectively produce circular or hexagonal holes in the basal plane of graphene, but the underlying plasma-graphene chemistry is unknown. Here, we study the hydrogen-plasma etching of monolayer graphene supported on SiO2 substrates across the range of plasma ion energies using scale-bridging molecular dynamics (MD) simulations based on reactive force-field potential. Our results uncover distinct etching mechanisms, operative within narrow ion energy windows, which fully explain the differing plasma-graphene reactions observed experimentally. Specific ion energy ranges are demonstrated for stable isotropic (∼2eV) versus anisotropic hole growth (∼20-30eV) within the basal plane of graphene, as well as for pure edge etching of graphene (∼1eV). Understanding the complex plasma-graphene chemistry opens up a means for controlled patterning of graphene nanostructures.

Original languageEnglish (US)
Article number035416
JournalPhysical Review B
Volume93
Issue number3
DOIs
StatePublished - Jan 11 2016

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Plasma-graphene interaction and its effects on nanoscale patterning'. Together they form a unique fingerprint.

Cite this