TY - GEN
T1 - Plasma-Assisted Burner Array Development using Cyclotronic Arc-Plasma Actuators
AU - Zimmerman, Joseph W.
AU - Carroll, David L.
AU - Hristov, Georgi K.
AU - Ansell, Phillip J.
N1 - Publisher Copyright:
© 2022, American Institute of Aeronautics and Astronautics Inc. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Magnetically-guided atmospheric arc devices were applied to provide plasma-excitation to premixed methane-air flames. Researchers have recently applied similar technology to study vortex generation for aerodynamic flow control, and the scaling and driver circuits used for those devices has been leveraged in the presented work. To provide a plasma-exited volume, an arc is produced in the gap of coaxial electrodes placed within the field of a strong rare-earth magnet. Due to drift motion in the magnetic field, the charged particles experience Lorentz force which causes the arc filament to sweep about the center of the coaxial electrodes. To observers, this takes on the apparent form of a plasma “disc” at the tip of the coax. The technique is applied to flame holding by integrating flow channels in the dielectric spacers of the coax, through which fuel and oxidizer are injected and mixed in the rotating plasma filament. The use of zero voltage switching circuits operating in the 70-80 kHz range to introduce plasma power in the flame zone is reported, with these circuit modules being powered by low voltage DC supplies (e.g., 24 V). The enhanced mixing effect of the plasma-excitation technique was demonstrated through high-speed imaging and schlieren. Gas analyzers were used to measure the reduction in the unburnt CO level above the lean flame zone when the plasma system was engaged. The methodology for sizing the coaxial plasma burners for natural gas combustion is presented. An array of plasma-assisted burners was demonstrated using this technique, with lean methane flow rates (= 0.76) corresponding to available heat release between 46 and 138 kW.
AB - Magnetically-guided atmospheric arc devices were applied to provide plasma-excitation to premixed methane-air flames. Researchers have recently applied similar technology to study vortex generation for aerodynamic flow control, and the scaling and driver circuits used for those devices has been leveraged in the presented work. To provide a plasma-exited volume, an arc is produced in the gap of coaxial electrodes placed within the field of a strong rare-earth magnet. Due to drift motion in the magnetic field, the charged particles experience Lorentz force which causes the arc filament to sweep about the center of the coaxial electrodes. To observers, this takes on the apparent form of a plasma “disc” at the tip of the coax. The technique is applied to flame holding by integrating flow channels in the dielectric spacers of the coax, through which fuel and oxidizer are injected and mixed in the rotating plasma filament. The use of zero voltage switching circuits operating in the 70-80 kHz range to introduce plasma power in the flame zone is reported, with these circuit modules being powered by low voltage DC supplies (e.g., 24 V). The enhanced mixing effect of the plasma-excitation technique was demonstrated through high-speed imaging and schlieren. Gas analyzers were used to measure the reduction in the unburnt CO level above the lean flame zone when the plasma system was engaged. The methodology for sizing the coaxial plasma burners for natural gas combustion is presented. An array of plasma-assisted burners was demonstrated using this technique, with lean methane flow rates (= 0.76) corresponding to available heat release between 46 and 138 kW.
UR - http://www.scopus.com/inward/record.url?scp=85123884110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123884110&partnerID=8YFLogxK
U2 - 10.2514/6.2022-2257
DO - 10.2514/6.2022-2257
M3 - Conference contribution
AN - SCOPUS:85123884110
SN - 9781624106316
T3 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
BT - AIAA SciTech Forum 2022
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Y2 - 3 January 2022 through 7 January 2022
ER -