Plasma and milk metabolomics profiles in dairy cows with subclinical and clinical ketosis

Yan Huang, Bihong Zhang, John Mauck, Juan J. Loor, Bo Wei, Bingyu Shen, Yazhou Wang, Chenxu Zhao, Xiaoyan Zhu, Jianguo Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Ketosis, a commonly observed energy metabolism disorder in dairy cows during the peripartal period, is distinguished by increased concentrations of BHB in the blood. This condition has a negative impact on milk production and quality, causing financial losses. An untargeted metabolomics approach was performed on plasma samples from cows between 5 and 7 DIM diagnosed as controls (CON; BHB <1.2 mM, n = 30), subclinically ketotic (SCK; 1.2 < BHB <3.0 mM, n = 30), or clinically ketotic (CK; BHB >3.0 mM, n = 30). Cows were selected from a commercial farm of 214 Holstein cows (average 305-d yield in the previous lactation of 35.42 ± 7.23 kg/d; parity, 2.41 ± 1.12; BCS, 3.1 ± 0.45). All plasma and milk samples (n = 90) were subjected to liquid chromatography-MS-based metabolomic analysis. Statistical analyses were performed using GraphPad Prism 8.0, MetaboAnalyst 4.0, and R version 4.1.3. Compared with the CON group, both SCK and CK groups had greater milk fat, freezing point, and fat-to-protein ratio, as well as lower milk protein, lactose, solids-not-fat, and milk density. Within 21 d after calving, compared with CON, the SCK group experienced a reduction of 2.65 kg/d in milk yield, while the CK group experienced a decrease of 7.7 kg/d. Untargeted metabolomics analysis facilitated the annotation of a total of 5,259 and 8,423 metabolites in plasma and milk. Differentially affected metabolites were screened in CON versus SCK, CON versus CK, and SCK versus CK (unpaired t-test, false discovery rate <0.05; and absolute value of log(2)-fold change >1.5). A total of 1,544 and 1,888 differentially affected metabolites were detected in plasma and milk. In plasma, glycerophospholipid metabolism, pyrimidine metabolism, tryptophan metabolism, sphingolipid metabolism, amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, and steroid hormone biosynthesis were identified as important pathways. Weighted gene co-expression network analysis (WGCNA) indicated that tryptophan metabolism is a key pathway associated with the occurrence and development of ketosis. Increases in 5-hydroxytryptophan and decreases in kynurenine and 3-indoleacetic acid in SCK and CK were suggestive of an impact at the gut level. The decrease of most glycerophospholipids indicated that ketosis is associated with disordered lipid metabolism. For milk, pyrimidine metabolism, purine metabolism, pantothenate and CoA biosynthesis, amino sugar and nucleotide sugar metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, and fatty acid degradation were identified as important pathways. The WGCNA indicated that purine and pyrimidine metabolism in plasma was highly correlated with milk yield during the peripartal period. Alterations in purine and pyrimidine metabolism characterized ketosis, with lower levels of these metabolites in both milk and blood underscoring reduced efficiency in nitrogen metabolism. Our results may help to establish a foundation for future research investigating mechanisms responsible for the occurrence and development of ketosis in peripartal cows.

Original languageEnglish (US)
Pages (from-to)6340-6357
Number of pages18
JournalJournal of Dairy Science
Volume107
Issue number8
DOIs
StatePublished - Aug 2024

Keywords

  • dairy cow
  • ketosis
  • purine and pyrimidine metabolism
  • tryptophan metabolism
  • untargeted metabolomics

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint

Dive into the research topics of 'Plasma and milk metabolomics profiles in dairy cows with subclinical and clinical ketosis'. Together they form a unique fingerprint.

Cite this