Ping-pong and outer space

Ilya Kapovich, Martin Lustig

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that, if φ, ψ ∈ Out(F N) are hyperbolic iwips (irreducible with irreducible powers) such that 〈φ, ψ〉 ⊆ Out(F N) is not virtually cyclic, then some high powers of φ and ψ generate a free subgroup of rank two for which all nontrivial elements are again hyperbolic iwips. Being a hyperbolic iwip element of Out(F N) is strongly analogous to being a pseudo-Anosov element of a mapping class group, so the above result provides analogues of "purely pseudo-Anosov" free subgroups in Out(F N).

Original languageEnglish (US)
Pages (from-to)173-201
Number of pages29
JournalJournal of Topology and Analysis
Volume2
Issue number2
DOIs
StatePublished - Jun 2010

Keywords

  • Free group
  • Out(F )
  • Outer space
  • dynamics
  • geodesic currents

ASJC Scopus subject areas

  • Analysis
  • Geometry and Topology

Fingerprint

Dive into the research topics of 'Ping-pong and outer space'. Together they form a unique fingerprint.

Cite this