Pilot Study of the Impacts of a Robotics Curriculum on Student's Subject-Related Identities and Understanding of Engineering

Holly M. Golecki, Elizabeth Ann McNeela, Thomas Tran, Karin Jensen

Research output: Contribution to journalConference articlepeer-review


Participation in educational robotics, tinkering, and making are common precursors to enrollment in engineering majors. Negative perceptions of robotics can inhibit some students from participating and later, pursuing engineering studies. Additionally, gender disparities persist across many engineering disciplines and are particularly high in mechanical engineering and electrical engineering, with less than 20% of undergraduate degrees being awarded to women (ASEE By the Numbers 2021). K12 robotics programs have shown potential in increasing a student's likelihood of enrolling in a mechanical or electrical majors. By broadening the applications of robotics to human-centered designs and highlighting soft and biomaterials used in building robots, the field of soft robotics may be a platform to engage a diversity of students in K12 robotics and later, engineering majors. This paper presents a pilot study aimed at answering the research question: Can a soft robotics curriculum impact high school students' attitudes and self-beliefs, and serve as a strategy to recruit women students to engineering majors traditionally dominated by men? To answer this research question, a soft material robotics curriculum and quantitative survey were piloted at a public high school in a class of 20 students. The class was composed students of whom 50% identify as girls and 50% identify as boys. The pilot curriculum was delivered over four days. Students participated in pre- and post-surveys, having parental consent in accordance with Institutional Review Board requirements. Students collaboratively worked in pairs to complete the builds using elastomer and textile materials, building robotic components while being introduced to engineering terms, concepts, and design process workflow. Pre- and post-surveys were distributed to students, measuring changes in STEM identities, engineering agency beliefs, and career interest. The results of this small pilot informed changes to the curriculum and quantitative survey tools for future use. Survey data analysis highlighted an increase in familiarity with soft robotics concepts, such as the material makeup being composed of “soft” materials for “human medical use.” There was also an increased understanding of specific engineering majors rather than the broader discipline. When asked to identify which major an individual may study to work on soft robots, participant answers exhibited a broader understanding of specific career paths after the curriculum. Preliminary analysis of the pilot study indicates our curriculum's potential to introduce students to engineering and its related career paths. The pilot also provided insight to the method of surveying used and justified for us the use of a retrospective survey in a full scale planned study. This program may serve as a pathway to engage a diversity of students in robotics and engineering leveraging new materials and applications.

Original languageEnglish (US)
JournalASEE Annual Conference and Exposition, Conference Proceedings
StatePublished - Jun 25 2023
Externally publishedYes
Event2023 ASEE Annual Conference and Exposition - The Harbor of Engineering: Education for 130 Years, ASEE 2023 - Baltimore, United States
Duration: Jun 25 2023Jun 28 2023

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'Pilot Study of the Impacts of a Robotics Curriculum on Student's Subject-Related Identities and Understanding of Engineering'. Together they form a unique fingerprint.

Cite this