Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Arun Mallya, Dillon Davis, Svetlana Lazebnik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work presents a method for adapting a single, fixed deep neural network to multiple tasks without affecting performance on already learned tasks. By building upon ideas from network quantization and pruning, we learn binary masks that “piggyback” on an existing network, or are applied to unmodified weights of that network to provide good performance on a new task. These masks are learned in an end-to-end differentiable fashion, and incur a low overhead of 1 bit per network parameter, per task. Even though the underlying network is fixed, the ability to mask individual weights allows for the learning of a large number of filters. We show performance comparable to dedicated fine-tuned networks for a variety of classification tasks, including those with large domain shifts from the initial task (ImageNet), and a variety of network architectures. Our performance is agnostic to task ordering and we do not suffer from catastrophic forgetting or competition between tasks.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Yair Weiss, Martial Hebert
PublisherSpringer
Pages72-88
Number of pages17
ISBN (Print)9783030012243
DOIs
StatePublished - 2018
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: Sep 8 2018Sep 14 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11208 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period9/8/189/14/18

Keywords

  • Binary networks
  • Incremental learning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights'. Together they form a unique fingerprint.

Cite this