Abstract
This paper reports on the temperature-dependent electrical resistivity and piezoresistive characteristics of boron-doped ultrananocyrstalline diamond (UNCD) and the fabrication of piezoresistive microcantilevers using boron-doped and undoped UNCD. The devices consist of 1-μm} -thick doped UNCD on either 1- or 2-μm}-thick undoped UNCD. The electrical resistivity of doped UNCD is 0.1 Ω ̇ cm at room temperature, which is five orders of magnitude smaller than the electrical resistivity of undoped UNCD. Over the temperature range of 25 ° C-200° C, the doped UNCD has a temperature coefficient of electrical resistance of (-1.4 × 10-3) per ° C. The doped UNCD exhibits a significant piezoresistive effect with a gauge factor of 7.53 ± 0.32 and a piezoresistive coefficient of 8.12 × 10-12\ Pa-1 at room temperature. The piezoresistive properties of UNCD are constant over the temperature range of 25 ° C-200° C. Microcantilevers having a length of 300μ have a deflection sensitivity of 0.186 mΩ/Ω per micrometer of cantilever end deflection. These measurements of electrical and piezoresistive properties of doped UNCD could aid the design of future diamond microsystems.
Original language | English (US) |
---|---|
Article number | 5567124 |
Pages (from-to) | 1234-1242 |
Number of pages | 9 |
Journal | Journal of Microelectromechanical Systems |
Volume | 19 |
Issue number | 5 |
DOIs | |
State | Published - Oct 2010 |
Keywords
- Diamond
- microcantilever
- piezoresistivity
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Mechanical Engineering