Piecewise-Linear Manifolds for Deep Metric Learning

Shubhang Bhatnagar, Narendra Ahuja

Research output: Contribution to journalConference articlepeer-review

Abstract

Unsupervised deep metric learning (UDML) focuses on learning a semantic representation space using only unlabeled data. This challenging problem requires accurately estimating the similarity between data points, which is used to supervise a deep network. For this purpose, we propose to model the high-dimensional data manifold using a piecewise-linear approximation, with each low-dimensional linear piece approximating the data manifold in a small neighborhood of a point. These neighborhoods are used to estimate similarity between data points. We empirically show that this similarity estimate correlates better with the ground truth than the similarity estimates of current state-of-the-art techniques. We also show that proxies, commonly used in supervised metric learning, can be used to model the piecewise-linear manifold in an unsupervised setting, helping improve performance. Our method outperforms existing unsupervised metric learning approaches on standard zeroshot image retrieval benchmarks.

Original languageEnglish (US)
Pages (from-to)269-281
Number of pages13
JournalProceedings of Machine Learning Research
Volume234
StatePublished - 2024
Event1st Conference on Parsimony and Learning, CPAL 2024 - Hongkong, China
Duration: Jan 3 2024Jan 6 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Piecewise-Linear Manifolds for Deep Metric Learning'. Together they form a unique fingerprint.

Cite this