Abstract
Progress towards probing molecular dynamics of octahydro-1,3,5,7- tetranitro-1,3,4,7-tetrazocine (HMX) subjected to shock compression of a few GPa and/or temperature excursions exceeding thermal decomposition values (T > 500 K) is described. Due to shock velocities of a few nm/ps, nanometer-thick layers are needed for picosecond time resolution. Therefore, 5-10 nm thick films of S-HMX were deposited on metallic substrates with a template of a 4-nitrobenzoic acid monolayer. A polymer layer a few microns thick was spin-coated on top of S-HMX for shock confinement. The monolayer and HMX layer were probed simultaneously utilizing an ultrafast nonlinear coherent vibrational spectroscopy, termed vibrational sum-frequency generation (SFG). Shock pressures were estimated via comparisons with the monolayer nitro transition frequency blueshift in hydrostatic pressure measurements. Temperature determinations were made based on the reflectance of the metallic substrate.
Original language | English (US) |
---|---|
Article number | 142004 |
Journal | Journal of Physics: Conference Series |
Volume | 500 |
Issue number | PART 14 |
DOIs | |
State | Published - 2014 |
Event | 18th Biennial Int. Conf. of the APS Topical Group on Shock Compression of Condensed Matter, APS-SCCM 2013 in Conjunction with the 24th Biennial Int. Conf. of the Int. Association for the Advancement of High Pressure Science and Technol., AIRAPT 2013 - Seattle, WA, United States Duration: Jul 7 2013 → Jul 12 2013 |
ASJC Scopus subject areas
- General Physics and Astronomy