Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe

Yan Zhang, Ari Esters, Oscar Bi, Yurii Vlasov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.

Original languageEnglish (US)
Title of host publication2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages209-212
Number of pages4
ISBN (Electronic)9781728120072
DOIs
StatePublished - Jun 2019
Event20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII - Berlin, Germany
Duration: Jun 23 2019Jun 27 2019

Publication series

Name2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII

Conference

Conference20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII
CountryGermany
CityBerlin
Period6/23/196/27/19

Fingerprint

Silicon
Droplet
Chemistry
brain
Brain
Probe
Monitoring
chemistry
probes
silicon
Nanofluidics
brain damage
Angle
differential pressure
Squeezing
Stability Region
fluidics
Fluidics
temporal resolution
compressing

Keywords

  • Droplet generation
  • Implantable neural probe
  • MEMS
  • Microdialysis
  • Neurochemistry

ASJC Scopus subject areas

  • Process Chemistry and Technology
  • Spectroscopy
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Electronic, Optical and Magnetic Materials
  • Control and Optimization
  • Instrumentation

Cite this

Zhang, Y., Esters, A., Bi, O., & Vlasov, Y. (2019). Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe. In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII (pp. 209-212). [8808797] (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/TRANSDUCERS.2019.8808797

Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe. / Zhang, Yan; Esters, Ari; Bi, Oscar; Vlasov, Yurii.

2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII. Institute of Electrical and Electronics Engineers Inc., 2019. p. 209-212 8808797 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhang, Y, Esters, A, Bi, O & Vlasov, Y 2019, Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe. in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII., 8808797, 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII, Institute of Electrical and Electronics Engineers Inc., pp. 209-212, 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII, Berlin, Germany, 6/23/19. https://doi.org/10.1109/TRANSDUCERS.2019.8808797
Zhang Y, Esters A, Bi O, Vlasov Y. Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe. In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII. Institute of Electrical and Electronics Engineers Inc. 2019. p. 209-212. 8808797. (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII). https://doi.org/10.1109/TRANSDUCERS.2019.8808797
Zhang, Yan ; Esters, Ari ; Bi, Oscar ; Vlasov, Yurii. / Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII. Institute of Electrical and Electronics Engineers Inc., 2019. pp. 209-212 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII).
@inproceedings{2f041d84bb5d491a96d8cde2ca3ca828,
title = "Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe",
abstract = "To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.",
keywords = "Droplet generation, Implantable neural probe, MEMS, Microdialysis, Neurochemistry",
author = "Yan Zhang and Ari Esters and Oscar Bi and Yurii Vlasov",
year = "2019",
month = "6",
doi = "10.1109/TRANSDUCERS.2019.8808797",
language = "English (US)",
series = "2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "209--212",
booktitle = "2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII",
address = "United States",

}

TY - GEN

T1 - Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe

AU - Zhang, Yan

AU - Esters, Ari

AU - Bi, Oscar

AU - Vlasov, Yurii

PY - 2019/6

Y1 - 2019/6

N2 - To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.

AB - To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.

KW - Droplet generation

KW - Implantable neural probe

KW - MEMS

KW - Microdialysis

KW - Neurochemistry

UR - http://www.scopus.com/inward/record.url?scp=85071919098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071919098&partnerID=8YFLogxK

U2 - 10.1109/TRANSDUCERS.2019.8808797

DO - 10.1109/TRANSDUCERS.2019.8808797

M3 - Conference contribution

AN - SCOPUS:85071919098

T3 - 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII

SP - 209

EP - 212

BT - 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII

PB - Institute of Electrical and Electronics Engineers Inc.

ER -