Hormone analyses and exocrine gland measurements were made to probe for physiological correlates of division of labor among similarly aged adult worker honey bees (Apis mellifera L.). Middle-age bees (ca. 2 weeks old) performing different tasks showed significant differences in both juvenile hormone (JH) biosynthesis rates and hemolymph titers; guards and undertakers had high JH, and wax producers and food storers, low JH. Guards and undertakers had similar hormone levels to foragers, even though they were 10 days younger than foragers. No differences in JH were detected among young bees (1-week-old queen attendants and nurses) or older bees (3-4 week-old pollen foragers, non-pollen foragers, and soldiers). Hypopharyngeal gland size was inversely correlated with worker age and rate of JH biosynthesis, but soldiers had significantly larger hypopharyngeal glands than did foragers, despite their similar age and JH level. Results from soldiers indicate that exocrine gland development is not always linked with age-related behavior and endocrine development; they also support the recent claim that soldiers constitute a group of older bees that are distinct from foragers. Hormonal analyses indicate that the current model of JH's role in honey bee division of labor needs to be expanded because high levels of JH are associated with several other tasks besides foraging. JH may be involved in the regulation of division of labor among similarly aged workers in addition to its role in age-related division of labor.

Original languageEnglish (US)
Pages (from-to)731-739
Number of pages9
JournalJournal of Comparative Physiology A
Issue number6
StatePublished - Jun 1 1994


  • Corpora allata
  • Division of labor
  • Hypopharyngeal glands
  • Juvenile hormone
  • Social insects

ASJC Scopus subject areas

  • Physiology
  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Physiological correlates of division of labor among similarly aged honey bees'. Together they form a unique fingerprint.

Cite this