Physics-Informed Optical Kernel Regression Using Complex-valued Neural Fields

Guojin Chen, Zehua Pei, Haoyu Yang, Yuzhe Ma, Bei Yu, Martin Wong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31% of parameters while achieving 69× smaller mean squared error with 1.3× higher throughput than the state-of-the-art.

Original languageEnglish (US)
Title of host publication2023 60th ACM/IEEE Design Automation Conference, DAC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350323481
DOIs
StatePublished - 2023
Externally publishedYes
Event60th ACM/IEEE Design Automation Conference, DAC 2023 - San Francisco, United States
Duration: Jul 9 2023Jul 13 2023

Publication series

NameProceedings - Design Automation Conference
Volume2023-July
ISSN (Print)0738-100X

Conference

Conference60th ACM/IEEE Design Automation Conference, DAC 2023
Country/TerritoryUnited States
CitySan Francisco
Period7/9/237/13/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Physics-Informed Optical Kernel Regression Using Complex-valued Neural Fields'. Together they form a unique fingerprint.

Cite this