Abstract
Successful invasion by nonindigenous species is often attributed to high propagule pressure, yet some foreign species become widespread despite showing reduced genetic variation due to founder effects. The signal crayfish (Pacifastacus leniusculus) is one such example, where rapid spread across Japan in recent decades is believed to be the result of only three founding populations. To infer the history and explore the success of this remarkable crayfish invasion, we combined detailed phylogeographical and morphological analyses conducted in both the introduced and native ranges. We sequenced 16S mitochondrial DNA of signal crayfish from across the introduced range in Japan (537 samples, 20 sites) and the native range in western North America (700 samples, 50 sites). Because chela size is often related to aggressive behavior in crayfish, and hence, their invasion success, we also measured chela size of a subset of specimens in both introduced and native ranges. Genetic diversity of introduced signal crayfish populations was as high as that of the dominant phylogeographic group in the native range, suggesting high propagule pressure during invasion. More recently established crayfish populations in Japan that originated through secondary spread from one of the founding populations exhibit reduced genetic diversity relative to older populations, probably as a result of founder effects. However, these newer populations also show larger chela size, consistent with expectations of rapid adaptations or phenotypic responses during the invasion process. Introduced signal crayfish populations in Japan originate from multiple source populations from a wide geographic range in the native range of western North America. A combination of high genetic diversity, especially for older populations in the invasive range, and rapid adaptation to colonization, manifested as larger chela in recent invasions, likely contribute to invasion success of signal crayfish in Japan.
Original language | English (US) |
---|---|
Pages (from-to) | 5366-5382 |
Number of pages | 17 |
Journal | Ecology and Evolution |
Volume | 6 |
Issue number | 15 |
DOIs | |
State | Published - Aug 1 2016 |
Keywords
- Biological invasion
- Pacifastacus leniusculus
- freshwater
- mitochondrial DNA
- population genetics
- propagule pressure
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Ecology
- Nature and Landscape Conservation