Abstract
Avian feather lice (Phthiraptera: Ischnocera) have undergone morphological diversification into ecomorphs based on how they escape host preening defences. Parrot lice are one prominent example of this phenomenon, with wing, body, or head louse ecomorphs occurring on various groups of parrots. Currently defined genera of parrot lice typically correspond to this ecomorphological variation. Here we explore the phylogenetic relationships among parrot feather lice by sequencing whole genomes and assembling a target set of 2395 nuclear protein coding genes. Phylogenetic trees based on concatenated and coalescent analyses of these data reveal highly supported trees with strong agreement between methods of analysis. These trees reveal that parrot feather lice fall into two separate clades that form a grade with respect to the Brueelia-complex. All parrot louse genera sampled by more than one species were recovered as monophyletic. The evolutionary relationships among these lice showed evidence of strong biogeographic signal, which may also be related to the relationships among their hosts.
Original language | English (US) |
---|---|
Article number | blae034 |
Journal | Biological Journal of the Linnean Society |
DOIs | |
State | E-pub ahead of print - Mar 13 2024 |
Keywords
- parasite
- ecomorphology
- Psittaciformes
- Psocodea
- systematics
- coevolution