Phylogenetic Diversity Theory Sheds Light on the Structure of Microbial Communities

James P. O'Dwyer, Steven W. Kembel, Jessica L. Green

Research output: Contribution to journalArticlepeer-review

Abstract

Microbial communities are typically large, diverse, and complex, and identifying and understanding the processes driving their structure has implications ranging from ecosystem stability to human health and well-being. Phylogenetic data gives us a new insight into these processes, providing a more informative perspective on functional and trait diversity than taxonomic richness alone. But the sheer scale of high resolution phylogenetic data also presents a new challenge to ecological theory. We bring a sampling theory perspective to microbial communities, considering a local community of co-occuring organisms as a sample from a larger regional pool, and apply our framework to make analytical predictions for local phylogenetic diversity arising from a given metacommunity and community assembly process. We characterize community assembly in terms of quantitative descriptions of clustered, random and overdispersed sampling, which have been associated with hypotheses of environmental filtering and competition. Using our approach, we analyze large microbial communities from the human microbiome, uncovering significant variation in diversity across habitats relative to the null hypothesis of random sampling.

Original languageEnglish (US)
Article numbere1002832
JournalPLoS computational biology
Volume8
Issue number12
DOIs
StatePublished - Dec 2012
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Phylogenetic Diversity Theory Sheds Light on the Structure of Microbial Communities'. Together they form a unique fingerprint.

Cite this