Phrase grounding by soft-label chain conditional random field

Jiacheng Liu, Julia Hockenmaier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The phrase grounding task aims to ground each entity mention in a given caption of an image to a corresponding region in that image. Although there are clear dependencies between how different mentions of the same caption should be grounded, previous structured prediction methods that aim to capture such dependencies need to resort to approximate inference or non-differentiable losses. In this paper, we formulate phrase grounding as a sequence labeling task where we treat candidate regions as potential labels, and use neural chain Conditional Random Fields (CRFs) to model dependencies among regions for adjacent mentions. In contrast to standard sequence labeling tasks, the phrase grounding task is defined such that there may be multiple correct candidate regions. To address this multiplicity of gold labels, we define so-called Soft-Label Chain CRFs, and present an algorithm that enables convenient end-to-end training. Our method establishes a new state-of-the-art on phrase grounding on the Flickr30k Entities dataset. Analysis shows that our model benefits both from the entity dependencies captured by the CRF and from the soft-label training regime. Our code is available at github.com/liujch1998/ SoftLabelCCRF.

Original languageEnglish (US)
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages5112-5122
Number of pages11
ISBN (Electronic)9781950737901
StatePublished - 2019
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period11/3/1911/7/19

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Phrase grounding by soft-label chain conditional random field'. Together they form a unique fingerprint.

Cite this