@inproceedings{c86c967d1ff74ad9930260bd9910d7ee,
title = "PhotoStylist: Altering the Style of Photos Based on the Connotations of Texts",
abstract = "The need to modify a photo to reflect the connotations of a text can arise due to multifarious reasons (e.g., a musician might modify a photo in the album cover to better reflect the connotations in her song lyrics). An interesting observation is that different styles of photos convey different feelings. In this paper, we propose the PhotoStylist scheme to effectively modify the style of an input photo to represent the connotations in an input text. Existing methods that aim to transfer emotions into photos rely on an emotion class being provided as input and modify the overall color of photos based on the input emotion class, generating unrealistic colors for many objects in the image. To address these limitations, we design PhotoStylist, a novel deep-learning-based approach, to alter the individual style of each object in the photo in a way that the connotations of the input text are naturally and effectively embedded into the modified photos. Evaluation results on the Amazon Mechanical Turk (MTurk) show that our scheme can achieve output photos significantly closer to the connotations of the input text than the output photos from the state-of-the-art baselines.",
author = "Khan, {Siamul Karim} and Zhang, {Daniel (Yue)} and Ziyi Kou and Yang Zhang and Dong Wang",
note = "Funding Information: Acknowledgment. This research is supported in part by the National Science Foundation under Grant No. IIS-2008228, CNS-1845639, CNS-1831669, Army Research Office under Grant W911NF-17-1-0409. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on. Publisher Copyright: {\textcopyright} 2021, Springer Nature Switzerland AG.; 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2021 ; Conference date: 11-05-2021 Through 14-05-2021",
year = "2021",
doi = "10.1007/978-3-030-75762-5_51",
language = "English (US)",
isbn = "9783030757618",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer",
pages = "642--654",
editor = "Kamal Karlapalem and Hong Cheng and Naren Ramakrishnan and Agrawal, {R. K.} and Reddy, {P. Krishna} and Jaideep Srivastava and Tanmoy Chakraborty",
booktitle = "Advances in Knowledge Discovery and Data Mining - 25th Pacific-Asia Conference, PAKDD 2021, Proceedings",
address = "Germany",
}