Photophosphorylation as a function of illumination time. II. Effects of permeant buffers

Donald R. Ort, Richard A. Dilley, Norman E. Good

Research output: Contribution to journalArticle

Abstract

(1) The amounts of orthophosphate, bicarbonate and tris(hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KCl are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl)aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KCl, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrpancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KCl, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosophorylation without ever entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.

Original languageEnglish (US)
Pages (from-to)108-124
Number of pages17
JournalBBA - Bioenergetics
Volume449
Issue number1
DOIs
StatePublished - Oct 13 1976
Externally publishedYes

Fingerprint

Photophosphorylation
Phosphorylation
Lighting
Buffers
Valinomycin
Acidification
Protons
Tromethamine
Thylakoids
Bicarbonates
Membranes
Adenosine Triphosphate
Phosphates
Chloroplasts
Electron Transport
Ions

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Cell Biology

Cite this

Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. / Ort, Donald R.; Dilley, Richard A.; Good, Norman E.

In: BBA - Bioenergetics, Vol. 449, No. 1, 13.10.1976, p. 108-124.

Research output: Contribution to journalArticle

Ort, Donald R. ; Dilley, Richard A. ; Good, Norman E. / Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. In: BBA - Bioenergetics. 1976 ; Vol. 449, No. 1. pp. 108-124.
@article{52644be7f1ff4f7ebff30f0e0a4be7c7,
title = "Photophosphorylation as a function of illumination time. II. Effects of permeant buffers",
abstract = "(1) The amounts of orthophosphate, bicarbonate and tris(hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KCl are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl)aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KCl, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrpancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KCl, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosophorylation without ever entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.",
author = "Ort, {Donald R.} and Dilley, {Richard A.} and Good, {Norman E.}",
year = "1976",
month = "10",
day = "13",
doi = "10.1016/0005-2728(76)90011-6",
language = "English (US)",
volume = "449",
pages = "108--124",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Photophosphorylation as a function of illumination time. II. Effects of permeant buffers

AU - Ort, Donald R.

AU - Dilley, Richard A.

AU - Good, Norman E.

PY - 1976/10/13

Y1 - 1976/10/13

N2 - (1) The amounts of orthophosphate, bicarbonate and tris(hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KCl are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl)aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KCl, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrpancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KCl, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosophorylation without ever entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.

AB - (1) The amounts of orthophosphate, bicarbonate and tris(hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KCl are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl)aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KCl, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrpancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KCl, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosophorylation without ever entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.

UR - http://www.scopus.com/inward/record.url?scp=0017194265&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017194265&partnerID=8YFLogxK

U2 - 10.1016/0005-2728(76)90011-6

DO - 10.1016/0005-2728(76)90011-6

M3 - Article

C2 - 10008

AN - SCOPUS:0017194265

VL - 449

SP - 108

EP - 124

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 1

ER -