Photonic resonator interferometric scattering microscopy

Nantao Li, Xiaojing Wang, Joseph Tibbs, Taylor D. Canady, Qinglan Huang, Glenn A. Fried, Xing Wang, Laura Cooper, Lijun Rong, Yi Lu, Brian T. Cunningham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Interferometric scattering microscopy is a newly emerging alternative to fluorescence microscopy in biomedical research and diagnostic testing due to its ability to detect nano-objects such as individual proteins, extracellular vesicles, and virions individually through their intrinsic elastic light scattering. To improve the signal-to-noise ratio, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a photonic crystal (PC) resonator is used as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create intensity contrast. Importantly, the scattered photons assume the wavevectors defined by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W/cm2. We demonstrate virus and protein detection, including highly selective capture and counting of intact pseudotype SARS-CoV-2 from saliva with sensitivity equivalent to conventional nucleic acid tests. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies, and as a single step, room temperature, and rapid viral detection technology.

Original languageEnglish (US)
Title of host publicationIntegrated Optics
Subtitle of host publicationDevices, Materials, and Technologies XXVI
EditorsSonia M. Garcia-Blanco, Pavel Cheben
PublisherSPIE
ISBN (Electronic)9781510648791
DOIs
StatePublished - 2022
EventIntegrated Optics: Devices, Materials, and Technologies XXVI 2022 - Virtual, Online
Duration: Feb 20 2022Feb 24 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12004
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceIntegrated Optics: Devices, Materials, and Technologies XXVI 2022
CityVirtual, Online
Period2/20/222/24/22

Keywords

  • SARS-CoV-2
  • diagnostics
  • interferometric scattering
  • label-free
  • photonic crystal

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Photonic resonator interferometric scattering microscopy'. Together they form a unique fingerprint.

Cite this