Photonic crystals: A platform for label-free and enhanced fluorescence biomolecular and cellular assays

Brian T. Cunningham, Leo Chan, Patrick C. Mathias, Nikhil Ganesh, Sherine George, Erich Lidstone, James Heeres, Paul J. Hergenrother

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Photonic crystal surfaces represent a class of resonant optical structures that are capable of supporting high intensity electromagnetic standing waves with near-field and far-field properties that can be exploited for high sensitivity detection of biomolecules and cells. While modulation of the resonant wavelength of a photonic crystal by the dielectric permittivity of adsorbed biomaterials enables label-free detection, the resonance can also be tuned to coincide with the excitation wavelength of common fluorescent tags - including organic molecules and semiconductor quantum dots. Photonic crystals are also capable of efficiently channeling fluorescent emission into a preferred direction for enhanced extraction efficiency. Photonic crystals can be designed to support multiple resonant modes that can perform label free detection, enhanced fluorescence excitation, and enhanced fluorescence extraction simultaneously on the same device. Because photonic crystal surfaces may be inexpensively produced over large surface areas by nanoreplica molding processes, they can be incorporated into disposable labware for applications such as pharmaceutical high throughput screening. In this talk, the optical properties of surface photonic crystals will be reviewed and several applications will be described, including results from screening a 200,000-member chemical compound library for inhibitors of protein-DNA interactions, gene expression microarrays, and high sensitivity of protein biomarkers.

Original languageEnglish (US)
Title of host publicationMaterials for Optical Sensors in Biomedical Applications
Pages43-52
Number of pages10
StatePublished - 2008
Event2008 MRS Fall Meeting - Boston, MA, United States
Duration: Dec 1 2008Dec 5 2008

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1133
ISSN (Print)0272-9172

Other

Other2008 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period12/1/0812/5/08

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Photonic crystals: A platform for label-free and enhanced fluorescence biomolecular and cellular assays'. Together they form a unique fingerprint.

Cite this