Abstract

We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection.

Original languageEnglish (US)
Pages (from-to)266-275
Number of pages10
JournalJournal of Biophotonics
Volume7
Issue number3-4
DOIs
StatePublished - Apr 2014

Keywords

  • E-jet printing
  • Enhanced fluorescence
  • Homogeneous assay
  • Photonic crystal
  • Submicron channel

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning'. Together they form a unique fingerprint.

Cite this