Photoluminescence and photoluminescence excitation spectroscopy of in situ Er-doped and Er-implanted GaN films grown by hydride vapor phase epitaxy

S. Kim, X. Li, J. J. Coleman, R. Zhang, D. M. Hansen, T. F. Kuech, S. G. Bishop

Research output: Contribution to journalConference articlepeer-review

Abstract

Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy have been carried out at 6K on the 1540 nm 4I13/24I15/2 emission of Er3+ in in situ Er-doped and Er-implanted GaN grown by hydride vapor phase epitaxy (HVPE). The PL and PLE of these two different Er-doped HVPE-grown GaN films are compared with Er-implanted GaN grown by metal organic chemical vapor deposition (MOCVD). In the in situ Er-doped HVPE-grown GaN, the lineshape of the broad PLE absorption bands and the broad PL bands is similar to that in Er-doped glass. The PL spectra of this in situ Er-doped sample are independent of excitation wavelength, unlike the PL of the Er-implanted GaN. These PL spectra are quite different from the site-selective PL spectra observed in the Er-implanted GaN, indicating that the seven different Er3+ sites existing in the Er-implanted MOCVD-grown GaN are not observed in the in situ Er-doped HVPE-grown GaN. Four of the seven different Er3+ sites observed in the Er-implanted MOCVD-grown GaN annealed at 900°C under a flow of N2 are present in the Er-implanted HVPE-grown GaN annealed at 800°C in an NH3/H2 atmosphere.

Original languageEnglish (US)
Pages (from-to)G11.4
JournalMaterials Research Society Symposium - Proceedings
Volume537
StatePublished - 1999
EventProceedings of the 1998 MRS Fall Meeting - Symposium on 'GaN and Related Alloys' - Boston, MA, USA
Duration: Nov 30 1998Dec 4 1998

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Photoluminescence and photoluminescence excitation spectroscopy of in situ Er-doped and Er-implanted GaN films grown by hydride vapor phase epitaxy'. Together they form a unique fingerprint.

Cite this