TY - PAT
T1 - Phosphor coating for irregular surfaces and method for creating phosphor coatings
AU - Yoon, Jekwon
AU - Eden, James Gary
AU - Park, Sung-Jin
AU - Kim, Kwang Soo
N1 - STATEMENT OF GOVERNMENT INTEREST This invention was made with government support under Contract No. FA9550-07-1-0003 awarded by United States Air Force Office of Scientific Research. The government has certain rights in the invention.
PY - 2017/5/23
Y1 - 2017/5/23
N2 - Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
AB - Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
M3 - Patent
M1 - 9659737
Y2 - 2011/07/14
ER -