Phase separation in vertical header of microchannel condensers - A mechanistic model

Jun Li, Pega Hrnjak

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Phase separation has been proven to increase performance of condensers of energy conversion systems (in vapor compression systems). Instead of conventional design, the inlet to a microchannel condenser prototype is in the middle of the height. After the first pass, in the vertical second header of the condenser, vapor phase separates from liquid phase due to gravity and sometimes other effects. In ideal case vapor should go to the top and liquid to the bottom, resulting in increased heat transfer. Due to interaction between vapor and liquid, separation is not perfect, expressed through the separation efficiency. A mechanistic model presented in the paper is built to predict the phase separation efficiency based on force balance analysis for the liquid phase and correlations for the two-phase pressure drop. For the force balance criteria, liquid phase is divided into droplets and film and treated separately. The model captures the experimental observations first in asymptotic sense: separation efficiency can be 100% at low liquid mass flux and low vapor mass flux, but also in quantitative. Initial agreement with experiment is achieved to be within 15%.

Original languageEnglish (US)
Title of host publicationFluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851579
DOIs
StatePublished - 2018
EventASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018 - Montreal, Canada
Duration: Jul 15 2018Jul 20 2018

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume3
ISSN (Print)0888-8116

Other

OtherASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Country/TerritoryCanada
CityMontreal
Period7/15/187/20/18

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Phase separation in vertical header of microchannel condensers - A mechanistic model'. Together they form a unique fingerprint.

Cite this