TY - GEN
T1 - Personalized Federated Learning with Parameter Propagation
AU - Wu, Jun
AU - Bao, Wenxuan
AU - Ainsworth, Elizabeth
AU - He, Jingrui
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/8/6
Y1 - 2023/8/6
N2 - With decentralized data collected from diverse clients, a personalized federated learning paradigm has been proposed for training machine learning models without exchanging raw data from local clients. We dive into personalized federated learning from the perspective of privacy-preserving transfer learning, and identify the limitations of previous personalized federated learning algorithms. First, previous works suffer from negative knowledge transferability for some clients, when focusing more on the overall performance of all clients. Second, high communication costs are required to explicitly learn statistical task relatedness among clients. Third, it is computationally expensive to generalize the learned knowledge from experienced clients to new clients. To solve these problems, in this paper, we propose a novel federated parameter propagation (FEDORA) framework for personalized federated learning. Specifically, we reformulate the standard personalized federated learning as a privacy-preserving transfer learning problem, with the goal of improving the generalization performance for every client. The crucial idea behind FEDORA is to learn how to transfer and whether to transfer simultaneously, including (1) adaptive parameter propagation: one client is enforced to adaptively propagate its parameters to others based on their task relatedness (e.g., explicitly measured by distribution similarity), and (2) selective regularization: each client would regularize its local personalized model with received parameters, only when those parameters are positively correlated with the generalization performance of its local model. The experiments on a variety of federated learning benchmarks demonstrate the effectiveness of the proposed FEDORA framework over state-of-the-art personalized federated learning baselines.
AB - With decentralized data collected from diverse clients, a personalized federated learning paradigm has been proposed for training machine learning models without exchanging raw data from local clients. We dive into personalized federated learning from the perspective of privacy-preserving transfer learning, and identify the limitations of previous personalized federated learning algorithms. First, previous works suffer from negative knowledge transferability for some clients, when focusing more on the overall performance of all clients. Second, high communication costs are required to explicitly learn statistical task relatedness among clients. Third, it is computationally expensive to generalize the learned knowledge from experienced clients to new clients. To solve these problems, in this paper, we propose a novel federated parameter propagation (FEDORA) framework for personalized federated learning. Specifically, we reformulate the standard personalized federated learning as a privacy-preserving transfer learning problem, with the goal of improving the generalization performance for every client. The crucial idea behind FEDORA is to learn how to transfer and whether to transfer simultaneously, including (1) adaptive parameter propagation: one client is enforced to adaptively propagate its parameters to others based on their task relatedness (e.g., explicitly measured by distribution similarity), and (2) selective regularization: each client would regularize its local personalized model with received parameters, only when those parameters are positively correlated with the generalization performance of its local model. The experiments on a variety of federated learning benchmarks demonstrate the effectiveness of the proposed FEDORA framework over state-of-the-art personalized federated learning baselines.
KW - federated learning
KW - negative transfer
KW - parameter propagation
UR - http://www.scopus.com/inward/record.url?scp=85171365245&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85171365245&partnerID=8YFLogxK
U2 - 10.1145/3580305.3599464
DO - 10.1145/3580305.3599464
M3 - Conference contribution
AN - SCOPUS:85171365245
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 2594
EP - 2605
BT - KDD 2023 - Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023
Y2 - 6 August 2023 through 10 August 2023
ER -