Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement

Chenkai Sun, Ke Yang, Revanth Gangi Reddy, Yi R. Fung, Hou Pong Chan, Kevin Small, Cheng Xiang Zhai, Heng Ji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The increasing demand for personalized interactions with large language models (LLMs) calls for methodologies capable of accurately and efficiently identifying user opinions and preferences. Retrieval augmentation emerges as an effective strategy, as it can accommodate a vast number of users without the costs from fine-tuning. Existing research, however, has largely focused on enhancing the retrieval stage and devoted limited exploration toward optimizing the representation of the database, a crucial aspect for tasks such as personalization. In this work, we examine the problem from a novel angle, focusing on how data can be better represented for more data-efficient retrieval in the context of LLM customization. To tackle this challenge, we introduce Persona-DB, a simple yet effective framework consisting of a hierarchical construction process to improve generalization across task contexts and collaborative refinement to effectively bridge knowledge gaps among users. In the evaluation of response prediction, Persona-DB demonstrates superior context efficiency in maintaining accuracy with a significantly reduced retrieval size, a critical advantage in scenarios with extensive histories or limited context windows. Our experiments also indicate a marked improvement of over 10% under cold-start scenarios, when users have extremely sparse data. Furthermore, our analysis reveals the increasing importance of collaborative knowledge as the retrieval capacity expands.

Original languageEnglish (US)
Title of host publicationMain Conference
EditorsOwen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert
PublisherAssociation for Computational Linguistics (ACL)
Pages281-296
Number of pages16
ISBN (Electronic)9798891761964
StatePublished - 2025
Event31st International Conference on Computational Linguistics, COLING 2025 - Abu Dhabi, United Arab Emirates
Duration: Jan 19 2025Jan 24 2025

Publication series

NameProceedings - International Conference on Computational Linguistics, COLING
VolumePart F206484-1
ISSN (Print)2951-2093

Conference

Conference31st International Conference on Computational Linguistics, COLING 2025
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period1/19/251/24/25

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement'. Together they form a unique fingerprint.

Cite this