TY - JOUR
T1 - Performing Microscope-Mounted Y-Shaped Cutting Tests
AU - Guerena, Matthew
AU - Peng, Jing Chen
AU - Schmid, Marcus
AU - Walsh, Cecilia
AU - Zhan, Shaobo
AU - Hutchens, Shelby B.
N1 - We would like to thank Dr. James Phillips, Dr. Amy Wagoner-Johnson, Alexandra Spitzer, and Amir Ostadi for their advice on this work. Funding came from the start-up grant provided by the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. M. Guerena, J. C. Peng, M. Schmid, and C. Walsh all received senior design credit for their work on this project.
PY - 2023/1
Y1 - 2023/1
N2 - Y-shaped cutting has recently been shown to be a promising method by which to understand the threshold length scale and failure energy of a material, as well as its failure response in the presence of excess deformation energy. The experimental apparatus used in these studies was vertically oriented and required cumbersome steps to adjust the angle between the Y-shaped legs. The vertical orientation prohibits visualization in standard optical microscopes. This protocol presents a Y-shaped cutting apparatus that mounts horizontally over an existing inverted microscope stage, can be adjusted in three dimensions (X-Y-Z) to fall within the objective's field of view, and allows easy modification of the angle between the legs. The latter two features are new for this experimental technique. The presented apparatus measures the cutting force within 1 mN accuracy. When testing polydimethylsiloxane (PDMS), the reference material for this technique, a cutting energy of 132.96 J/m2 was measured (32° leg angle, 75 g preload) and found to fall within the error of previous measurements taken with a vertical setup (132.9 J/m2 ± 3.4 J/m2). The approach applies to soft synthetic materials, tissues, or bio-membranes and may provide new insights into their behavior during failure. The list of parts, CAD files, and detailed instructions in this work provide a roadmap for the easy implementation of this powerful technique.
AB - Y-shaped cutting has recently been shown to be a promising method by which to understand the threshold length scale and failure energy of a material, as well as its failure response in the presence of excess deformation energy. The experimental apparatus used in these studies was vertically oriented and required cumbersome steps to adjust the angle between the Y-shaped legs. The vertical orientation prohibits visualization in standard optical microscopes. This protocol presents a Y-shaped cutting apparatus that mounts horizontally over an existing inverted microscope stage, can be adjusted in three dimensions (X-Y-Z) to fall within the objective's field of view, and allows easy modification of the angle between the legs. The latter two features are new for this experimental technique. The presented apparatus measures the cutting force within 1 mN accuracy. When testing polydimethylsiloxane (PDMS), the reference material for this technique, a cutting energy of 132.96 J/m2 was measured (32° leg angle, 75 g preload) and found to fall within the error of previous measurements taken with a vertical setup (132.9 J/m2 ± 3.4 J/m2). The approach applies to soft synthetic materials, tissues, or bio-membranes and may provide new insights into their behavior during failure. The list of parts, CAD files, and detailed instructions in this work provide a roadmap for the easy implementation of this powerful technique.
UR - http://www.scopus.com/inward/record.url?scp=85147392025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147392025&partnerID=8YFLogxK
U2 - 10.3791/64546
DO - 10.3791/64546
M3 - Article
C2 - 36744782
AN - SCOPUS:85147392025
SN - 1940-087X
VL - 2023
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 191
M1 - e64546
ER -