Performance modeling of algebraic multigrid on blue Gene/Q: Lessons learned

Hormozd Gahvari, William Gropp, Kirk E. Jordan, Martin Schulz, Ulrike Meier Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The IBM Blue Gene/Q represents a large step in the evolution of massively parallel machines. It features 16-core compute nodes, with additional parallelism in the form of four simultaneous hardware threads per core, connected together by a five-dimensional torus network. Machines are being built with core counts in the hundreds of thousands, with the largest, Sequoia, featuring over 1.5 million cores. In this paper, we develop a performance model for the solve cycle of algebraic multigrid on Blue Gene/Q to help us understand the issues this popular linear solver for large, sparse linear systems faces on this architecture. We validate the model on a Blue Gene/Q at IBM, and conclude with a discussion of the implications of our results.

Original languageEnglish (US)
Title of host publicationProceedings - 2012 SC Companion
Subtitle of host publicationHigh Performance Computing, Networking Storage and Analysis, SCC 2012
Pages377-385
Number of pages9
DOIs
StatePublished - 2012
Event2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012 - Salt Lake City, UT, United States
Duration: Nov 10 2012Nov 16 2012

Publication series

NameProceedings - 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012

Other

Other2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012
Country/TerritoryUnited States
CitySalt Lake City, UT
Period11/10/1211/16/12

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Performance modeling of algebraic multigrid on blue Gene/Q: Lessons learned'. Together they form a unique fingerprint.

Cite this