Performance improvement and workflow development of virtual diffraction calculations

Shawn P. Coleman, Sudhakar Pamidighantam, Lars Koesterke, Mark Van Moer, Douglas E. Spearot, Yang Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is presented to produce electron and x-ray diffraction patterns directly from atomistic simulation data. This algorithm advances beyond previous virtual diffraction methods by utilizing an ultra high-resolution mesh of reciprocal space which eliminates the need for a priori knowledge of the material structure. This paper focuses on (1) algorithmic advances necessary to improve performance, memory efficiency and scalability of the virtual diffraction calculation, and (2) the integration of the diffraction algorithm into a workflow across heterogeneous computing hardware for the purposes of integrating simulations, virtual diffraction calculations and visualization of electron and x-ray diffraction patterns.

Original languageEnglish (US)
Title of host publicationProceedings of the XSEDE 2014 Conference
Subtitle of host publicationEngaging Communities
PublisherAssociation for Computing Machinery
ISBN (Print)9781450328937
DOIs
StatePublished - 2014
Event2014 Annual Conference on Extreme Science and Engineering Discovery Environment, XSEDE 2014 - Atlanta, GA, United States
Duration: Jul 13 2014Jul 18 2014

Publication series

NameACM International Conference Proceeding Series

Other

Other2014 Annual Conference on Extreme Science and Engineering Discovery Environment, XSEDE 2014
Country/TerritoryUnited States
CityAtlanta, GA
Period7/13/147/18/14

Keywords

  • Diffraction
  • Materials Science
  • Visualization
  • Workflow

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Performance improvement and workflow development of virtual diffraction calculations'. Together they form a unique fingerprint.

Cite this