Performance Bounds for Policy-Based Average Reward Reinforcement Learning Algorithms

Yashaswini Murthy, Mehrdad Moharrami, R. Srikant

Research output: Contribution to journalConference articlepeer-review

Abstract

Many policy-based reinforcement learning (RL) algorithms can be viewed as instantiations of approximate policy iteration (PI), i.e., where policy improvement and policy evaluation are both performed approximately. In applications where the average reward objective is the meaningful performance metric, discounted reward formulations are often used with the discount factor being close to 1, which is equivalent to making the expected horizon very large. However, the corresponding theoretical bounds for error performance scale with the square of the horizon. Thus, even after dividing the total reward by the length of the horizon, the corresponding performance bounds for average reward problems go to infinity. Therefore, an open problem has been to obtain meaningful performance bounds for approximate PI and RL algorithms for the average-reward setting. In this paper, we solve this open problem by obtaining the first finite-time error bounds for average-reward MDPs, and show that the asymptotic error goes to zero in the limit as policy evaluation and policy improvement errors go to zero.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Performance Bounds for Policy-Based Average Reward Reinforcement Learning Algorithms'. Together they form a unique fingerprint.

Cite this