Per-tensor fixed-point quantization of the back-propagation algorithm

Charbel Sakr, Naresh Shanbhag

Research output: Contribution to conferencePaperpeer-review

Abstract

The high computational and parameter complexity of neural networks makes their training very slow and difficult to deploy on energy and storage-constrained computing systems. Many network complexity reduction techniques have been proposed including fixed-point implementation. However, a systematic approach for designing full fixed-point training and inference of deep neural networks remains elusive. We describe a precision assignment methodology for neural network training in which all network parameters, i.e., activations and weights in the feedforward path, gradients and weight accumulators in the feedback path, are assigned close to minimal precision. The precision assignment is derived analytically and enables tracking the convergence behavior of the full precision training, known to converge a priori. Thus, our work leads to a systematic methodology of determining suitable precision for fixed-point training. The near optimality (minimality) of the resulting precision assignment is validated empirically for four networks on the CIFAR-10, CIFAR-100, and SVHN datasets. The complexity reduction arising from our approach is compared with other fixed-point neural network designs.

Original languageEnglish (US)
StatePublished - 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: May 6 2019May 9 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
Country/TerritoryUnited States
CityNew Orleans
Period5/6/195/9/19

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Per-tensor fixed-point quantization of the back-propagation algorithm'. Together they form a unique fingerprint.

Cite this