Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells

Wen Yang Hu, Ranli Lu, Dan Ping Hu, Ozan Berk Imir, Qianying Zuo, Dan Moline, Parivash Afradiasbagharani, Lifeng Liu, Scott Lowe, Lynn Birch, Donald J.Vander Griend, Zeynep Madak-Erdogan, Gail S. Prins

Research output: Contribution to journalArticlepeer-review

Abstract

Per- and polyfluorinated alkyl substances (PFAS) are a large family of widely used synthetic chemicals that are environmentally and biologically persistent and present in most individuals. Chronic PFAS exposure have been linked to increased prostate cancer risk in occupational settings, however, underlying mechanisms have not been interrogated. Herein we examined exposure of normal human prostate stem-progenitor cells (SPCs) to 10 nM PFOA or PFOS using serial passage of prostasphere cultures. Exposure to either PFAS for 3–4 weeks increased spheroid numbers and size indicative of elevated stem cell self-renewal and progenitor cell proliferation. Transcriptome analysis using single-cell RNA sequencing (scRNA-seq) showed 1) SPC expression of PPARs and RXRs able to mediate PFAS effects, 2) the emergence of a new cell cluster of aberrantly differentiated luminal progenitor cells upon PFOS/PFOA exposure, and 3) enrichment of cancer-associated signaling pathways. Metabolomic analysis of PFAS-exposed prostaspheres revealed increased glycolytic pathways including the Warburg effect as well as strong enrichment of serine and glycine metabolism which may promote a pre-malignant SPC fate. Finally, growth of in vivo xenografts of tumorigenic RWPE-2 human prostate cells, shown to contain cancer stem-like cells, was markedly enhanced by daily PFOS feeding to nude mice hosts. Together, these findings are the first to identify human prostate SPCs as direct PFAS targets with resultant reprogrammed transcriptomes and metabolomes that augment a preneoplastic state and may contribute to an elevated prostate cancer risk with chronic exposures.

Original languageEnglish (US)
Article number114902
JournalBiochemical Pharmacology
Volume197
DOIs
StatePublished - Mar 2022

Keywords

  • PFAS
  • PFOA
  • PFOS
  • Progenitor cell
  • Prostate
  • Stem cell

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology

Cite this