TY - GEN
T1 - PenDer
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
AU - Gupta, Akhil
AU - Marla, Lavanya
AU - Sun, Ruoyu
AU - Shukla, Naman
AU - Kolbeinsson, Arinbjörn
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - When deploying machine learning models in the real-world, system designers may wish that models exhibit certain shape behavior, i.e., model outputs follow a particular shape with respect to input features. Trends such as monotonicity, convexity, diminishing or accelerating returns are some of the desired shapes. Presence of these shapes makes the model more interpretable for the system designers, and adequately fair for the customers. We notice that many such common shapes are related to derivatives, and propose a new approach, PenDer (Penalizing Derivatives), which incorporates these shape constraints by penalizing the derivatives. We further present an Augmented Lagrangian Method (ALM) to solve this constrained optimization problem. Experiments on three real-world datasets illustrate that even though both PenDer and state-of-the-art Lattice models achieve similar conformance to shape, PenDer captures better sensitivity of prediction with respect to intended features. We also demonstrate that PenDer achieves better test performance than Lattice while enforcing more desirable shape behavior.
AB - When deploying machine learning models in the real-world, system designers may wish that models exhibit certain shape behavior, i.e., model outputs follow a particular shape with respect to input features. Trends such as monotonicity, convexity, diminishing or accelerating returns are some of the desired shapes. Presence of these shapes makes the model more interpretable for the system designers, and adequately fair for the customers. We notice that many such common shapes are related to derivatives, and propose a new approach, PenDer (Penalizing Derivatives), which incorporates these shape constraints by penalizing the derivatives. We further present an Augmented Lagrangian Method (ALM) to solve this constrained optimization problem. Experiments on three real-world datasets illustrate that even though both PenDer and state-of-the-art Lattice models achieve similar conformance to shape, PenDer captures better sensitivity of prediction with respect to intended features. We also demonstrate that PenDer achieves better test performance than Lattice while enforcing more desirable shape behavior.
UR - http://www.scopus.com/inward/record.url?scp=85118617963&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118617963&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85118617963
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 11536
EP - 11544
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
Y2 - 2 February 2021 through 9 February 2021
ER -