Abstract
A recent trend of fair machine learning is to define fairness as causality-based notions which concern the causal connection between protected attributes and decisions. However, one common challenge of all causality-based fairness notions is identifiability, i.e., whether they can be uniquely measured from observational data, which is a critical barrier to applying these notions to real-world situations. In this paper, we develop a framework for measuring different causality-based fairness. We propose a unified definition that covers most of previous causality-based fairness notions, namely the path-specific counterfactual fairness (PC fairness). Based on that, we propose a general method in the form of a constrained optimization problem for bounding the path-specific counterfactual fairness under all unidentifiable situations. Experiments on synthetic and real-world datasets show the correctness and effectiveness of our method.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 32 |
State | Published - 2019 |
Event | 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada Duration: Dec 8 2019 → Dec 14 2019 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing