Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.)

Research output: Contribution to journalArticle

Abstract

Seasonal changes in the distribution and abundance of furanocoumarins in wild parsnip, Pastinaca sativa (Umbelliferae), were examined in a population of plants in Tompkins County, New York. Xanthotoxin, imperatorin and bergapten (linear furanocoumarins) occur in all above-ground parts of the plant; in addition, angelicin and sphondin (angular furanocoumarins) occur in umbels of some individuals. Total furanocoumarin content, as measured by percent dry weight, is greatest in reproductive parts, particularly buds and seeds; variation in concentrations between plants is greatest in vegetative structures (e.g., leaves). Within the plant, the distribution of furanocoumarins is significantly correlated with nitrogen, as opposed to biomass, allocation. In that nitrogen is often a factor limiting the plant growth, furanocoumarins appear to be allocated in proportion to plant tissue value; reproductive structures, obvious contributors to plant fitness, contain over ten times the amount of nitrogen and furanocoumarin contained in vegetative structures such as senescent leaves. Stepwise multiple regression analysis revealed that generalized insect herbivores tend to feed on plants or plant parts low in furanocoumarin content and, correspondingly, low in nitrogen content. Parsnip specialists, notably Depressaria pastinacella (Lepidoptera: Oecophoridae), feed exclusively on umbels, plant parts rich in nitrogen and furanocoumarins; furanocoumarin number and content in fact account for over 60% of the variance in number of umbel feeders. These patterns conform with previous determinations of the toxicological properties of furanocoumarins. Nitrogen is known to affect growth rate, fecundity, longevity and survivorship of insect herbivores; by tolerating or detoxifying furanocoumarins, D. pastinacella can consume plant tissues containing significantly greater amounts of nitrogen than tissues consumed by generalist feeders. That the presence of D. pastinacella on individual plants is correlated with the number of furanocoumarins present is consistent with the hypothesis that parsnip specialists use angular furanocoumarins as host recognition cues.

Original languageEnglish (US)
Pages (from-to)236-244
Number of pages9
JournalOecologia
Volume49
Issue number2
DOIs
StatePublished - May 1 1981
Externally publishedYes

Fingerprint

Pastinaca sativa
parsnips
psoralens
herbivory
herbivores
insect
insects
Depressaria pastinacella
nitrogen
inflorescences
herbivore
plant anatomy
plant tissues
Oecophoridae
bergapten
methoxsalen
biomass allocation
survivorship
bud
generalist

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Cite this

Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.). / Berenbaum, May R.

In: Oecologia, Vol. 49, No. 2, 01.05.1981, p. 236-244.

Research output: Contribution to journalArticle

@article{f02ac2e6a20943b398a1feb422bd64ec,
title = "Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.)",
abstract = "Seasonal changes in the distribution and abundance of furanocoumarins in wild parsnip, Pastinaca sativa (Umbelliferae), were examined in a population of plants in Tompkins County, New York. Xanthotoxin, imperatorin and bergapten (linear furanocoumarins) occur in all above-ground parts of the plant; in addition, angelicin and sphondin (angular furanocoumarins) occur in umbels of some individuals. Total furanocoumarin content, as measured by percent dry weight, is greatest in reproductive parts, particularly buds and seeds; variation in concentrations between plants is greatest in vegetative structures (e.g., leaves). Within the plant, the distribution of furanocoumarins is significantly correlated with nitrogen, as opposed to biomass, allocation. In that nitrogen is often a factor limiting the plant growth, furanocoumarins appear to be allocated in proportion to plant tissue value; reproductive structures, obvious contributors to plant fitness, contain over ten times the amount of nitrogen and furanocoumarin contained in vegetative structures such as senescent leaves. Stepwise multiple regression analysis revealed that generalized insect herbivores tend to feed on plants or plant parts low in furanocoumarin content and, correspondingly, low in nitrogen content. Parsnip specialists, notably Depressaria pastinacella (Lepidoptera: Oecophoridae), feed exclusively on umbels, plant parts rich in nitrogen and furanocoumarins; furanocoumarin number and content in fact account for over 60{\%} of the variance in number of umbel feeders. These patterns conform with previous determinations of the toxicological properties of furanocoumarins. Nitrogen is known to affect growth rate, fecundity, longevity and survivorship of insect herbivores; by tolerating or detoxifying furanocoumarins, D. pastinacella can consume plant tissues containing significantly greater amounts of nitrogen than tissues consumed by generalist feeders. That the presence of D. pastinacella on individual plants is correlated with the number of furanocoumarins present is consistent with the hypothesis that parsnip specialists use angular furanocoumarins as host recognition cues.",
author = "Berenbaum, {May R}",
year = "1981",
month = "5",
day = "1",
doi = "10.1007/BF00349195",
language = "English (US)",
volume = "49",
pages = "236--244",
journal = "Oecologia",
issn = "0029-8519",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.)

AU - Berenbaum, May R

PY - 1981/5/1

Y1 - 1981/5/1

N2 - Seasonal changes in the distribution and abundance of furanocoumarins in wild parsnip, Pastinaca sativa (Umbelliferae), were examined in a population of plants in Tompkins County, New York. Xanthotoxin, imperatorin and bergapten (linear furanocoumarins) occur in all above-ground parts of the plant; in addition, angelicin and sphondin (angular furanocoumarins) occur in umbels of some individuals. Total furanocoumarin content, as measured by percent dry weight, is greatest in reproductive parts, particularly buds and seeds; variation in concentrations between plants is greatest in vegetative structures (e.g., leaves). Within the plant, the distribution of furanocoumarins is significantly correlated with nitrogen, as opposed to biomass, allocation. In that nitrogen is often a factor limiting the plant growth, furanocoumarins appear to be allocated in proportion to plant tissue value; reproductive structures, obvious contributors to plant fitness, contain over ten times the amount of nitrogen and furanocoumarin contained in vegetative structures such as senescent leaves. Stepwise multiple regression analysis revealed that generalized insect herbivores tend to feed on plants or plant parts low in furanocoumarin content and, correspondingly, low in nitrogen content. Parsnip specialists, notably Depressaria pastinacella (Lepidoptera: Oecophoridae), feed exclusively on umbels, plant parts rich in nitrogen and furanocoumarins; furanocoumarin number and content in fact account for over 60% of the variance in number of umbel feeders. These patterns conform with previous determinations of the toxicological properties of furanocoumarins. Nitrogen is known to affect growth rate, fecundity, longevity and survivorship of insect herbivores; by tolerating or detoxifying furanocoumarins, D. pastinacella can consume plant tissues containing significantly greater amounts of nitrogen than tissues consumed by generalist feeders. That the presence of D. pastinacella on individual plants is correlated with the number of furanocoumarins present is consistent with the hypothesis that parsnip specialists use angular furanocoumarins as host recognition cues.

AB - Seasonal changes in the distribution and abundance of furanocoumarins in wild parsnip, Pastinaca sativa (Umbelliferae), were examined in a population of plants in Tompkins County, New York. Xanthotoxin, imperatorin and bergapten (linear furanocoumarins) occur in all above-ground parts of the plant; in addition, angelicin and sphondin (angular furanocoumarins) occur in umbels of some individuals. Total furanocoumarin content, as measured by percent dry weight, is greatest in reproductive parts, particularly buds and seeds; variation in concentrations between plants is greatest in vegetative structures (e.g., leaves). Within the plant, the distribution of furanocoumarins is significantly correlated with nitrogen, as opposed to biomass, allocation. In that nitrogen is often a factor limiting the plant growth, furanocoumarins appear to be allocated in proportion to plant tissue value; reproductive structures, obvious contributors to plant fitness, contain over ten times the amount of nitrogen and furanocoumarin contained in vegetative structures such as senescent leaves. Stepwise multiple regression analysis revealed that generalized insect herbivores tend to feed on plants or plant parts low in furanocoumarin content and, correspondingly, low in nitrogen content. Parsnip specialists, notably Depressaria pastinacella (Lepidoptera: Oecophoridae), feed exclusively on umbels, plant parts rich in nitrogen and furanocoumarins; furanocoumarin number and content in fact account for over 60% of the variance in number of umbel feeders. These patterns conform with previous determinations of the toxicological properties of furanocoumarins. Nitrogen is known to affect growth rate, fecundity, longevity and survivorship of insect herbivores; by tolerating or detoxifying furanocoumarins, D. pastinacella can consume plant tissues containing significantly greater amounts of nitrogen than tissues consumed by generalist feeders. That the presence of D. pastinacella on individual plants is correlated with the number of furanocoumarins present is consistent with the hypothesis that parsnip specialists use angular furanocoumarins as host recognition cues.

UR - http://www.scopus.com/inward/record.url?scp=0007767067&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0007767067&partnerID=8YFLogxK

U2 - 10.1007/BF00349195

DO - 10.1007/BF00349195

M3 - Article

AN - SCOPUS:0007767067

VL - 49

SP - 236

EP - 244

JO - Oecologia

JF - Oecologia

SN - 0029-8519

IS - 2

ER -