Path Integral Methods with Stochastic Control Barrier Functions

Chuyuan Tao, Hyung Jin Yoon, Hunmin Kim, Naira Hovakimyan, Petros G Voulgaris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the sampling-based algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis.

Original languageEnglish (US)
Title of host publication2022 IEEE 61st Conference on Decision and Control, CDC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1654-1659
Number of pages6
ISBN (Electronic)9781665467612
DOIs
StatePublished - 2022
Externally publishedYes
Event61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexico
Duration: Dec 6 2022Dec 9 2022

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2022-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference61st IEEE Conference on Decision and Control, CDC 2022
Country/TerritoryMexico
CityCancun
Period12/6/2212/9/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Path Integral Methods with Stochastic Control Barrier Functions'. Together they form a unique fingerprint.

Cite this