Passive vibration control through nonlinear energy pumping

Alexander F. Vakakis, D. Michael McFarland, Lawrence Bergman, Leonid Manevitch, Oleg Gendelman

Research output: Contribution to conferencePaperpeer-review

Abstract

We examine vibration control through passive energy pumping in a system of damped coupled oscillators. This is a one-way, passive and irreversible energy flow from a linear main system to a nonlinear attachment that acts, in essence, as a nonlinear energy sink (NES). Energy pumping is caused by 1:1 resonance captures on resonant manifolds of the damped systems. We show that the NES is capable of absorbing significant portions of the energies generated by transient, broadband external excitations. We present numerical simulations of single- and multi-mode energy pumping, that involve isolated resonance captures or resonance capture cascades, respectively. In addition, we discuss methodologies for enhancing the nonlinear energy pumping phenomenon by properly selecting the system parameters. The described technique of passively localizing and locally eliminating externally induced energy provides a new paradigm for vibration and shock isolation of mechanical oscillators.

Original languageEnglish (US)
Pages1883-1888
Number of pages6
StatePublished - 2003
Event2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Chicago, IL, United States
Duration: Sep 2 2003Sep 6 2003

Other

Other2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityChicago, IL
Period9/2/039/6/03

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Passive vibration control through nonlinear energy pumping'. Together they form a unique fingerprint.

Cite this