Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment

Nicholas E. Wierschem, D. Dane Quinn, Sean A. Hubbard, Mohammad A. Al-Shudeifat, D. Michael McFarland, Jie Luo, Larry A. Fahnestock, Billie F. Spencer, Alexander F. Vakakis, Lawrence A. Bergman

Research output: Contribution to journalArticlepeer-review

Abstract

This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.

Original languageEnglish (US)
Pages (from-to)5393-5407
Number of pages15
JournalJournal of Sound and Vibration
Volume331
Issue number25
DOIs
StatePublished - Dec 3 2012

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment'. Together they form a unique fingerprint.

Cite this